Altering Transplantation Time to Avoid Periods of High Temperature Can Efficiently Reduce Bacterial Wilt Disease Incidence with Tomato
نویسندگان
چکیده
Tomato bacterial wilt caused by Ralstonia solanacearum bacterium is a severe problem in Southern China, where relatively high environmental temperatures commonly prevails during the crop seasons. Previous research has indicated that bacterial wilt disease incidence generally increases during the warm months of summer leading to reduced tomato yield. Moreover, the efficacy of bio-organic fertilizers (BOFs)-organic compost fortified with pathogen-suppressive bacteria-is often lost during the periods of high environmental temperatures. Here we studied if the disease incidence could be reduced and the BOF performance enhanced by simply preponing and postponing the traditional seedling transplantation times to avoid tomato plant development during periods of high environmental temperature. To this end, a continuous, two-year field experiment was conducted to evaluate the performance of BOF in two traditional (late-spring [LS] and early-autumn [EA]) and two alternative (early-spring [ES] and late-autumn [LA]) crop seasons. We found that changing the transplantation times reduced the mean disease incidence from 33.9% (LS) and 54.7% (EA) to 11.1% (ES) and 7.1% (LA), respectively. Reduction in disease incidence correlated with the reduction in R. Solanacearum pathogen density in the tomato plant rhizosphere and stem base. Applying BOF during alternative transplantation treatments improved biocontrol efficiency from 43.4% (LS) and 3.1% (EA) to 67.4% (ES) and 64.8% (LA). On average, the mean maximum air temperatures were positively correlated with the disease incidence, and negatively correlated with the BOF biocontrol efficacy over the crop seasons. Crucially, even though preponing the transplantation time reduced the tomato yield in general, it was still economically more profitable compared to LS season due to reduced crop losses and relatively higher market prices. Preponing and postponing traditional tomato transplantation times to cooler periods could thus offer simple but effective way to control R. solanacearum disease outbreaks.
منابع مشابه
Enhancement of bacterial wilt resistance and rhizosphere health in tomato using bionanocomposites
Biological control agents are useful components in the enhancement of plant disease resistance and improvement of soil properties. Effect of biological control agents (BCAs) as a disease control method in plants is hampered by their vulnerability to environmental and edaphic conditions. This study entailed the use of chitosan-silica nanocomposites for delivery of BCAs. Effect of BCAs-nanocompos...
متن کاملEffects of Varying Environmental Conditions on Biological Control of Fusarium Wilt of Tomato by Nonpathogenic Fusarium spp.
ABSTRACT The influence of varying environmental and cropping conditions including temperature, light, soil type, pathogen isolate and race, and cultivar of tomato on biological control of Fusarium wilt of tomato by isolates of nonpathogenic Fusarium oxysporum (CS-20 and CS-24) and F. solani (CS-1) was evaluated in greenhouse and growth chamber experiments. Liquid spore suspensions (10(6)/ml) of...
متن کاملIdentifying Tomato Wilt disease and Controlling It Using Antagonist Bacteria in East Azerbaijan Province
Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive diseases which negatively affect the tomato production worldwide. Considering the importance of the disease, using biological control agents could be effective approaches in reducing the damage of the pathogen. Tomato samples of suspected bacterial wilt disease were gathered from different regions of East Azarbayjan....
متن کاملBioorganic Fertilizer Enhances Soil Suppressive Capacity against Bacterial Wilt of Tomato
Tomato bacterial wilt caused by Ralstonia solanacearum is one of the most destructive soil-borne diseases. Many strategies have been taken to improve soil suppressiveness against this destructive disease, but limited success has been achieved. In this study, a novel bioorganic fertilizer revealed a higher suppressive ability against bacterial wilt compared with several soil management methods i...
متن کاملHydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants
Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H2O2) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O2 (-)) and H2O2 was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses ...
متن کامل